, , ,

Lake Challa, Kenya

Lake Challa Scientific Drilling Project


Professor Dirk Verschuren, University of Ghent

In late 2016, DOSECC will participate in the DeepCHALLA project in conjunction with the ICDP, the International Continental Scientific Drilling Program.  The project will  require our team to obtain core samples through open-water drilling on Lake Challa, a volcanic crater lake on the border of Tanzania and Kenya. The water body is fed by groundwater from Mount Kilimanjaro and is surrounded by a 100 metres high crater rim, requiring unique considerations for the design, systems engineering, and staff training necessary to obtain quality core samples.

Climate records obtained through sub-tropical cores are compared to those taken in polar regions to determine climate variations. Climate records previously available required the data additional samples from an equatorial region could provide in order to better map historical global climate patterns.  Lake Challa’s location provided an ideal location due to the convergence of both northern and southern hemisphere monsoon activity and the zone of convection between Atlantic and Indian Ocean moisture sources.

The goal of this project was to drill a quality core sample that would clearly show climate and ecosystem conditions over the past 250,000 years.  This span would encompass two full glacial-interglacial cycles and the entire known existence of modern humans in East Africa. The climate record’s length, in tandem with excellent sediment conditions, creates an unprecedented opportunity to better understand climate variability and record extremes and weather events.


  1. Reconstruct two glacial-interglacial cycles of tropical monsoon dynamics over the western Indian Ocean.
  2. Document long-term biodiversity patterns and ecological dynamics of a tropical savanna ecosystem in response to changes in atmospheric CO2, temperature, moisture balance, and fire.
  3. Reconstruct the long-term dynamics of a tropical freshwater ecosystem (nutrient budget, aquatic productivity) in response to climate-driven changes.
  4. Show exactly how often, when, and how much the East African landscape has changed throughout the entire existence of anatomically modern humans

Not only is this project designed to better understand and predict climate and ecosystem variations, it provides critical data in the study of why early human ancestors expanded from Africa into the Middle East and Eurasia ~100,000 years ago.

Read more about this scientific drilling project at ICDP .

November 2016 Lake Challa Scientific Drilling Project Update


Preparing for Chicxulub: A Time Lapse of the Load

Preparing for a historic core drilling services project is no easy task.  Watch our team prepare the core drilling rig and all project equipment to be shipped to the Chicxulub drilling site.   Read more about this core drilling project here.


A Birds-Eye View of the Rig at Chicxulub, DOSECC Core Drilling Services

Get a birds-eye view of the full core drilling rig used for the historic Chicxulub Crater scientific drilling project.  Read more about this project here.

, , ,

Chicxulub, Yucatan, Mexico

Chicxulub Scientific Core Drilling Services Project




During April and May 2016, DOSECC participated as part of a joint IODP-ICDP Mission Specific Platform on Expedition 364 on the L/B Myrtle in the Chicxulub Crater as part of the European Consortium for Ocean Research Drilling.  The team was tasked with drilling to 1,500 m below the bottom of the ocean to obtain the first offshore core samples from the peak ring in the central zone of the crater.  

The Chicxulub Crater is an impact crater straddling land and sea on the Mexican Yucatán Peninsula.  The estimated date of the impact which created the crater is now widely accepted as the event that triggered the mass extinction of over 70% of life on earth during the the Cretaceous–Paleogene boundary (K–Pg boundary), approximately 66 million years ago, including the global extinction of non-avian dinosaurs.

The crater itself is believed to have been created by an asteroid with an estimated diameter of 60 km, leaving a crater over 180 km in diameter and 20 km deep. After its discovery in the 1970s, it was confirmed in 1991 as an impact crater due to the discovery of shocked quartz, a gravity anomaly, and tektites in surrounding areas, including samples high in iridium. The minerals around the crater layer include limestone and marl to a depth of almost 1,000 m (3,300 ft) and date to the Paleocene era.  Underneath this layer, another 500 m of andesite glass and breccia are found.  However, within the crater, these andesitic igneous rocks were only found as shocked quartz and the K–Pg boundary is depressed to 600 to 1,100 m (average depth is about 500 m surrounding the crater).

The Chicxulub Crater is the only known crater on the planet with a remaining impact peak ring.  However, the ring is located under 600 m of sediment.  This project revealed the peak ring to be a thick layer of broken, melted rock just beneath a layer of sandstone, which may point to the possibility of an enormous tsunami triggered by the impact.

Upon the successful completion of the project, the samples were shipped to Bremen, Germany, where ECORD Science Party members will then analyze the samples to determine the formation of the peak ring and to calculate total impact energy. Samples taken reflect the post-impact conditions from the Eocene era, between 50 and 55 million years ago, and will likely reveal through the sediment and fossil record new information about how the environment and life began to recover after the cataclysm.

Read related blog posts:

Preparing for Chicxulub: Time Lapse of the Load

A Birds-Eye View of the Rig at Chicxulub, DOSECC Core Drilling Services

Chicxulub Project Watched Around the World

Chicxulub Project Report from the Yucatan

DOSECC Recognized by ESO Expedition 364 at the Chicxulub Impact Crater

DOSECC Chicxulub Project Covered on MSN

NPR Coverage of DOSECC Drilling Project in Chicxulub

Shattered Earth Making Rock Flow – ESO Expedition 364

BBC Coverage on how cores from this project are being studied

, ,

Lake Towuti


Lake Towuti Scientific Drilling Projecttowuti-scientific-drilling-project

lake-towuti-small-imageLake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 Ma) tectonic lakes located in central Sulawesi, Indonesia. Lake Towuti’s location in central Indonesia provides an important opportunity to reconstruct long-term terrestrial paleoclimate change in a crucially important yet understudied region- the Western Pacific warm pool, heart of the El Niño-Southern Oscillation. Lake Towuti has high rates of floral and faunal endemism and is surrounded by one of the most diverse tropical forests on Earth making it a hotspot of Southeast Asian biodiversity. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide ferruginous metal substrates that feed a diverse, exotic microbial community in the lake and its sediments, potentially analogous to the microbial ecosystems that operated in the Archean Oceans and on Mars.  The Towuti Scientific Drilling Program provided valuable new information to understand the climate, biological, and geomicrobiological evolution of this unique system.


Read more about this scientific drilling project at Leibnitz Institute for Applied Geophysics.

Read more at ICDP.

, ,

Lake Junin


Lake Junin Scientific Drilling Project


Lake Junín, located at ~4100 m asl in the inner tropics of the Southern Hemisphere, is a prime target for drilling because it contains a thick (>200 m) sediment package deposited at a high rate (0.2 to 1.0 mm yrF1). Moraine mapping coupled with cosmogenic radionuclide dating indicate that paleoglaciers reached the lake edge, but have not overridden the lake in one million years, or more. Lake Junín is thus one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of glaciers in nearby cordillera. The lake also contains ideal sediments for multiproxy analysis that can be reliably dated using both the radiocarbon and UFTh methods. The oxygen isotopic composition of marl and ostracod carapaces recovered in multiple preliminary cores covering the last 50 ka demonstrate that the d18O of authigenic calcite primarily records the isotopic composition of precipitation and secondarily the degree of evaporative enrichment of lake water. Lake Junín contains a continuous record of tropical hydroclimate over interglacial and interstadial intervals for much of the past several hundred thousand years that both complements and significantly extends stable isotope records from regional ice cores and speleothems.

Read more about this scientific drilling project at ICDP.

, ,

Olduvai Gorge


Olduvai Gorge Scientific Drilling Projectthe-olduvai-gorge-scientific-drilling-project

The scientific goals of The Olduvai Project are to develop a better understanding of the evolution of the Olduvai basin throughout time, particularly in the impact of climate change to the evolution of hominins in the last two million years.  This approach extends archaeological investigation of hominin adaptation beyond the traditional method and beyond the Gorge.  Core samples from areas beyond the Gorge would greatly expand our knowledge about the basin-wide landscape contexts of hominin activities, and the basin’s structure, lacustrine history and how it relates to regional climate history.  The ultimate goal of this approach is to strengthen both research and conservation in the Gorge.

See more information on the goals and research relating to this project:



This project is related to:

Hominid Sites and Paleo Lakes Scientific Drilling Project HSPDP

Lake Olorgesallie Scientific Drilling Project

Smithsonian Human Origins Project


, ,

Lake Ohrid

Lake Ohrid scientific core drilling project, located in Ohrid, Macedonia

Lake Ohrid project, located in Ohrid, Macedonia

Lake Ohrid project, located in Ohrid, Macedonia, a 2013 project was institutionally-funded.

Scientific Collaboration On Past Speciation Conditions in Lake Ohrid (SCOPSCO)

Lake Ohrid is a transboundary lake between the Republics of Macedonia and Albania. With more than 200 endemic species described, the lake is a unique aquatic ecosystem of worldwide importance. This importance was emphasized, when the lake was declared UNESCO World Heritage Site in 1979, and included as a target area of the International Continental Scientific Drilling Program (ICDP) already in 1993. The lake is considered to be the oldest, continuously existing lake in Europe. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid.

Read more about the scientific core drilling project on Lake Ohrid at ICDP.

, ,

Critical Zone Observatory (CZO)


Critical Zone Observatory (CZO) Scientific Drilling Project

critical-zone-scientific-drillingThis is a NSF- funded scientific drilling project in California’s Sierra Nevada conducted by the DOSECC core drilling services team in 2013.  This overview is from their website, CriticalZone.org:

Spearheaded by colleagues at the University of Wyoming, researchers have been participating in a number of weathering studies investigating long-term versus short-term rates of erosion (sediment basins and solute fluxes versus cosmogenic nuclides and regolith geochemistry), landscape evolution, “stepped topography” and the role of bare rock in shaping landscapes, the role of dust in pedogenesis and nutrient supply to the forests in and around the CZO (from isotopic tracers), and the origins of coarse sediment in streams (also from isotopic tracers).

Geophysical imaging of weathered layers at the CZO has been studied over the past two summers to provide 2D and 3D knowledge of the subsurface. Methods of geophysical investigation include seismic refraction and resistivity. Tests on hypotheses include what controls the thickness of the subsurface (weathering and erosion), and how much water is stored in the subsurface (porosity versus depth).

Future studies focus on cosmogenic nuclide method development (10Be in magnetite), drilling and coring in partnership with DOSECC (Drilling, Observation and Sampling of the Earths Continental Crust).


, ,

Hominid Sites and Paleo Lakes Drilling Project (HSPDP)

Kenya Human Origins Drilling1

Drilling for Human Origins

Andrew S. Cohen University of Arizona

We participated in this scientific core drilling services project to obtain sediment cores from several of the most important fossil hominin and early Paleolithic artifact sites in the world, located in Kenya and Ethiopia. Our objective was to drill in near-continuous lacustrine sedimentary sequences close to areas of critical importance for understanding hominin phylogeny, and covering key time intervals for addressing questions about the role of earth system (and especially climate)forcing in shaping human evolution. These sites are all currently on-land, but consist of thick lacustrine sedimentary sequences with rapid deposition rates. Therefore, the sites combined the attributes of relatively low cost targets (in comparison with open water, deep lake sites) and the potential for highly continuous and informative paleoenvironmental records obtainable from lake beds.


Tugen Hills – June 1, 2013

W. Turkana – June 21, 2013

Chew Bahir – November 6, 2014

Northern Awash – February 23, 2014

L. Magadi – June 15, 2014


Since the 1980s paleoanthropologists and geologists have made major strides in attempting to link our understanding of human origins with the tempo and mode of climate change and variability on the Earth (e.g. Vrba, 1988, Potts, 1996, deMenocal, 2004). Systematic efforts have addressed the key question of why hominin evolution displays a pulsed pattern, with well-defined periods of extensive speciation or extinction, cultural change and geographic expansion, interspersed with long periods when relatively little change seems to occur. Is this the result of broad forcing effects of either directional environmental change (climate, etc.), the result of changes in the variability of local or regional environments, or yet-unrecognized forcing mechanism(s). These efforts have proceeded along two fairly well established paths:

  • Correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability, especially the rhythm of orbital forcing cycles, as recorded in the continuous archives of deep-sea sediment cores (e.g. DeMenocal, 1995 and 2004), or,
  • Correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change, inferred from continental outcrop records of paleosols, lake beds and non-hominin fossils (e.g. Bobe and Behrensmeyer, 2004; Quade et al, 2004).


Kenya Human Origins Drilling

Figure 1. Outcrop of Middle Pliocene diatomaceous lake beds at Ledi Geraru, northern Afar region of Ethiopia, typical of the target lithologies for drilling in this area (photo: Roy Johnson.)














Our objective is to develop a new community-wide effort to address this central question about human origins, combining the strengths of both of the approaches above, and avoiding some of their inherent weaknesses. Our approach is to promote a concerted effort to obtain drill core records from near-continuous sedimentary sequences located close to areas of critical importance for understanding hominin evolution, focused around critical time intervals for our core question above.

Drill cores, with their continuity and potential preservation of organic matter, fossils and other archives that are frequently degraded or disjunct on the outcrop exposures, provide a record that will vastly improve understanding of environmental history in the places and times where various species of hominins lived. Obtaining such records from the continental interiors will provide a spatially resolved record at the landscape scale, much more localized (and with much higher temporal resolution) than the regional/global climate signals preserved in deep sea core records. Finally, because the largest number of critical events in hominin phylogeny occurred in Africa, such a drilling campaign should start in that continent. The rationale for such a research program was defined at a recent NSF/DOSECC-funded conceptual workshop “Paleoclimates and Human Evolution” (Cohen et al., 2006; Potts, REF).

Our approach to the use of scientific drilling to address questions of human origins has a precedent in the 2005 drilling campaign at Lake Malawi (e.g. Scholz et al., 2006; 2007; Cohen et al., 2007, Brown et al. 2007, 2008). This project yielded near-continuous core records spanning the last few hundred thousand years, an important time intervals in human prehistory. It also provided a “proof-of-concept” that high-quality core records can be retrieved from African lake deposits with profound implications for the connection between climate and human prehistory.

We now propose to conduct a scientific drilling campaign at four sites of outstanding importance for addressing questions of linkages between human origins and paleoenvironmental history:

  • The Awash River Valley-Ledi Geraru area, northern Afar area of Ethiopia (Middle Pliocene; Figure 1)
  • The West Turkana area, northern Kenya (Plio-Pleistocene)
  • The Olorgesailie area, southern Kenya (Pleistocene)
  • Lake Magadi, southern Kenya (Pleistocene)

As an outcome of this drilling project we will be able to:

  • Test the similarity between hominin site records within local depocenters and existing lake/deep sea core records using similar types of core data sets. By linking the site records to each other where they overlap (e.g. Olorgesailie and Magadi) we will be able to tease out which aspects of the paleoenvironmental records are a function of local hydrology and which are regional signals.
  • Identify climate “surprises” such as major, abrupt climate shifts or short duration events of wide spread impact, which may have played a role in shaping human evolutionary events or hominin species demography (e.g. Cohen et al., 2007).
  • Test hypotheses linking local environmental conditions/change/variability to adaptations (physical and cultural) (e.g. Potts, 1996 and in press). Our records will allow us to evaluate the records of terrestrial climate at key hominin sites through intervals of changing modes of variability in marine records. Marine records and solar insolation forcing suggest modal periods of high environmental variability, which Potts (1996 and in press) has argued should lead to pulses of evolutionary innovation. Whether orbitally modeled periods of high and low climate variability, which are well recorded in marine cores, are also the primary drivers of environmental variation in the African continental tropics remains to be tested, and would be an outcome of our drilling campaign.

As of late 2008 drilling funds for this project have not yet been secured. However, funding has been provided by NSF to conduct initial site and logistics surveys, including the acquisition of subsurface geophysical data (Figure 2) and from NSF and ICDP to hold a drilling workshop to discuss the target localities and other possible future drilling sites for collecting paleoclimate information relevant to human evolution.


Kenya Human Origins Drilling1

Figure 2. Reflection seismic survey of Plio-Pleistocene sediments at West Turkana (June 2008). Preparing to shoot using a Land Cruiser mounted accelerated weight drop system (photo: Craig Feibel)















Bobe, R. and Behrensmeyer, A.K. 2004, The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399-420.

Brown, E.T. Johnson, T.C., Scholz, C.A., Cohen, A.S. and King, J. 2007, Abrupt Change in Tropical African Climate Linked to the Bipolar Seesaw Over the Past 55,000 Years. In Press, Geophys. Res. Let. 34, L20702, doi:10.1029/2007/GL031240.

Brown, E.T., Johnson, T.C., Scholz, C.A., Cohen, A.S. and King, J.W., 2008, Reply to comment by Yannick Garcin on ‘‘Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years’’ Geophysical Research Letters, Vol. 35, L04702, doi:10.1029/2007GL033004, 2008.

Cohen, A.S., Ashley, G.M., Potts, R., Behrensmeyer, A.K., Feibel, C., and Quade. J., 2006, Paleoclimate and Human Evolution Workshop. EOS 87:161.

Cohen, A.S., Stone, J.R., Beuning, K.R., Park, L.E., Reinthal, P.N., Dettman, D., Scholz, C.A., Johnson, T.C., King, J.W., Talbot, M.R., Brown, E.T., and Ivory, S.J., 2007 Ecological Consequences of Early Late-Pleistocene Megadroughts in Tropical Africa. Proc. Nat. Acad. Sci. 104:16422-16427.

deMenocal, P.B., 1995, Plio-Pleistocene African climate. Science 270:53-59.

deMenocal, P. 2004, African climate change and faunal evolution during the Plio-Pleistocene. EPSL 220:3-24.

Potts, R., 1996, Evolution and climate variability. Science 273:922-923.

Potts, R., in press Environmental context of Pliocene human evolution in Africa. In: Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (R. Bobe, Z. Alemseged, and A.K. Behrensmeyer, eds.), Kluwer, New York.

Potts, R., 2007, Paleoclimate and human evolution. Evolutionary Anthropology 16:1-3.

Quade, J., Levin, N., Semaw, S., Stout, D., Renne, P., Rogers, M., Simpson, M., 2004, Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. GSA Bull. 116:1529-1544.

Scholz, C.A., Cohen, A.S., Johnson, T.C. and King, J. W., 2006 The 2005 Lake Malawi Scientific Drilling Project. Scientific Drilling Mar 2006:17-19, doi:10.2204/iodp.sd.1.04.2006.

Scholz, C.A., Johnson, T.C., Cohen, A.S., King, J.W., Peck, J., Overpeck, J.T., Talbot, M.R., Brown, E.T., Kalindekafe, L., Amoako, P., et al. 2007, East African megadroughts between 135-75 kyr ago and implications for early human history Proc. Nat. Acad. Sci. 104:16416-16421.

Vrba, E.,S 1988, Late Pliocene climate events and hominid evolution. In Grine, F.(ed) Evolutionary History of the “Robust” Australopithicines. Aldine Press, N.Y., pp. 405-426.